A high order HODIE finite difference scheme for 1D parabolic singularly perturbed reaction-diffusion problems

نویسندگان

  • Carmelo Clavero
  • Jose L. Gracia
چکیده

This paper deals with the numerical approximation of the solution of 1D parabolic singularly perturbed problems of reaction–diffusion type. The numerical method combines the standard implicit Euler method on a uniform mesh to discretize in time and a HODIE compact fourth order finite difference scheme to discretize in space, which is defined on a priori special meshes condensing the grid points in the boundary layer regions. The method is uniformly convergent having first order in time and almost fourth order in space. The analysis of the uniform convergence is made in two steps, splitting the contribution to the error from the time and the space discretization. Although this idea has been previously used to prove the uniform convergence for parabolic singularly perturbed problems, here the proof is based on a new study of the asymptotic behavior of the exact solution of the semidiscrete problems obtained after the time discretization by using the Euler method. Some numerical results are given corroborating in practice the theoretical results. 2011 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type

In this paper, we have proposed a numerical method for singularly perturbed  fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and  finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided  in...

متن کامل

On the uniform convergence of a finite difference scheme for time dependent singularly perturbed reaction-diffusion problems

In this work we are interested in the numerical approximation of 1D parabolic singularly perturbed problems of reaction–diffusion type. To approximate the multiscale solution of this problem we use a numerical scheme combining the classical backward Euler method and central differencing. The scheme is defined on some special meshes which are the tensor product of a uniform mesh in time and a sp...

متن کامل

Numerical method for a system of second order singularly perturbed turning point problems

In this paper, a parameter uniform numerical method based on Shishkin mesh is suggested to solve a system of second order singularly perturbed differential equations with a turning point exhibiting boundary layers. It is assumed that both equations have a turning point at the same point. An appropriate piecewise uniform mesh is considered and a classical finite difference scheme is applied on t...

متن کامل

A Parameter Uniform Numerical Scheme for Singularly Perturbed Differential-difference Equations with Mixed Shifts

In this paper, we consider a second-order singularly perturbed differential-difference equations with mixed delay and advance parameters. At first, we approximate the model problem by an upwind finite difference scheme on a Shishkin mesh. We know that the upwind scheme is stable and its solution is oscillation free, but it gives lower order of accuracy. So, to increase the convergence, we propo...

متن کامل

Pre-publicaciones Del Seminario Matematico 2008 an Almost Second Order Uniformly Convergent Method for Parabolic Singularly Perturbed Reaction- Diffusion Systems an Almost Second Order Uniformly Convergent Method for Parabolic Singularly Perturbed Reaction-diffusion Systems *

In this work we consider a parabolic system of two linear singularly perturbed equations of reaction-diffusion type coupled in the reaction terms. The small values of the diffusion parameters, in general, cause that the solution has boundary layers at the ends of the spatial domain. To obtain an efficient approximation of the solution we propose a numerical method combining the Crank-Nicolson m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 218  شماره 

صفحات  -

تاریخ انتشار 2012